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Abstract 
In this paper we propose an evolutionary computation approach for the 

modelling of yield strength in formed material. One of the most general evolutionary 
computation methods is genetic programming, which was used in our research. Genetic 
programming is an automated method for creating a working computer program from a 
problem’s high-level statement. Genetic programming does this by genetically breeding 
a population of computer programs using the principles of Darwinian’s natural selection 
and biologically inspired operations. During our research, material was cold formed by 
drawing using different process parameters and then determining yield strengths 
(dependent variable) of the specimens. On the basis of a training data set, various 
different genetic models for yield strength distribution were developed during simulated 
evolution. The accuracies of the best models were proved by a testing data set and 
comparing between the genetic and regression models. The research showed that very 
accurate genetic models can be developed by the proposed approach. 
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1. Introduction 
 

Many modelling methods for predicting dependent output variables have been 
developed to reduce the costs of the experiments and computer computations. In most 
conventional deterministic modelling methods, such as regression analysis, a prediction 
model is determined in advance. Traditional methods often employed to solve real 
complex problems tend to inhibit elaborate explorations of the search space. They can 
be expensive and often result in sub-optimal solutions. Because of the pre-specified size 
and shape of the model, the latter is often incapable of capturing complex relationships 
between influencing parameters. It is very important that the independent input 
variables influence on the dependent output variables and, consequently, on the product 
quality has been already examined in the early stages of a metal forming process. 
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Evolutionary computation (EC) is generating considerable interest for solving 
real engineering problems. They are proving robust in delivering global optimal 
solutions and helping to resolve those limitations encountered in traditional methods. 
EC harnesses the power of natural selection to turn computers into optimization tools. 
This is very applicable to different problems in the manufacturing industry [1,2]. One of 
most important EC methods is genetic programming (GP) which is, similarly to a 
genetic algorithm, an evolutionary computation method for imitating biological 
evolution of living organisms. Several  researches have  been carried out using a neural 
network or genetic algorithms for modelling, thus forming process parameters [2-6], but 
only a few dealing with much more general genetic programming method [7-9]. In the 
GP method, the structure subject for adaptation is the population of hierarchically-
organized computer programs. The GP method is most often used for complex system 
modelling, but it can also be effectively used for the modelling of a relatively simple 
system, such as the systems described in our paper.  

This paper describes an evolutionary computation method approach for the 
modelling of yield strength. Experimental data obtained during the cold drawing 
processes under different conditions serves as an environment which, during simulated 
evolution, models for the yield strength have to be adapted to. Different values for 
effective strains and coefficients of friction were used as independent input variables 
(parameters), while yield strength was a dependent output variable. Then, GP was used 
for the evolutionary development of the models for yield strength prediction, on the 
basis of a training data set. No assumptions about the model’s form and size were 
determined in advance, but were left to the evolutionary process. Finally, the prediction 
accuracy of the model was proved using the testing data set. 

 

2. Method used 
 
Genetic programming is probably the most general approach from among 

evolutionary computation methods in which the structures subject to adaptation are 
those hierarchically organized computer programs whose size and form dynamically 
change during simulated evolution.  

The space for solutions in the GP method is the huge space of all possible 
computer programs consisting of components describing the problem area studied. The 
aim of GP is to find out the computer program that best solves the problem. Possible 
solutions in GP are all those possible computer programs that can be composed in a 
recursive manner from a set of function genes F and a set of terminal genes T. Function 
genes F are arithmetical functions, Boolean functions, relation functions, etc., while 
terminal genes are numerical constants, logical constants, variables, etc. [1] 

The initial population is obtained by the creation of random computer programs 
consisting of available function genes from set F and available terminal genes from set 
T. Each program represents a random point in the searching space. The creation of an 
initial population is a blind random search for solutions within the huge space of 
possible solutions. The next step is the calculation of individual’s adaptation to the 
environment (i.e., calculation of fitness for each computer program). Fitness is a 
guideline for modifying those structures undergoing adaptation. Computer programs 
change in GP, in particular during genetic operations regarding reproduction and 
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crossover. The reproduction operation gives a higher probability of selection to more 
successful organisms. They are copied unchanged into the next generation. The 
crossover operation ensures the exchange of genetic material between computer 
programs. The mutation operation increases the genetic diversity of a population. After 
finishing the first cycle, which includes creation of the initial population, calculation of 
fitness for each individual of the population, and genetic modification of the contents of 
the computer programs and formation of a new population, an iterative repetition of 
fitness calculation and genetic modification follows. After a certain number of 
generations the computer programs are usually much better adapted to the environment. 
The definition of the environment depends on the problem dealt with. The evolution is 
terminated when the termination criterion is fulfilled. This can be a prescribed number 
of generations or sufficient quality of the solution. Since evolution is a non-
deterministic process, it does not end with a successful solution after each run (i.e., 
civilization). In order to obtain a successful solution, the problem must be processed 
over several independent runs. The number of runs required for the satisfactory solution 
depends on the difficulty of the problem.  

 

3. Experimental work 
 
The aim of the experimental work was to determine the influence of the effective 

strain εe and coefficient of friction μ during cold drawing on the change of yield 
strength of cold drawn copper alloy CuCrZr. This is a special copper alloy with 
0,71%Cr, 0,05% Zr. It has high electrical and thermal conductivity, with excellent 
mechanical and physical properties at elevated temperatures.  

Copper alloy rods were deformed by cold drawing under different conditions. 
The drawing speed was 20 m/min and the angle of drawing die was δ = 28°. Copper 
alloy rods were drawn from an initial diameter of + D=20 mm to six different diameters 
(i.e. six different effective strains). Three different lubricants with different coefficients 
of friction (μ=0,07, μ=0,11 and μ=0,16)  were used for the drawing process. In order to 
evaluate the yield strength, standard specimens for tensile tests were prepared from 
locations in the middles of the drawn rods. In this way we obtained 18 different 
experimental specimens. The yield strengths of all specimens were determined by 
providing three tensile tests for each specimen in order to provide reliable results. The 
results (average values) for yield strength are presented in Table 1. Experimental data 
serve as an environment which, during simulated evolution, models for impact 
toughness have to adapt. 

 
Table 1. Experimental results 

No. Effective strain, 
εe 

Coeficent of 
friction, μ 

Yield strength,  
Rp0,2 [N/mm2] 

initial spec. / / 409 
1 0.10 0.07 498 
2 0.21 0.07 513 
3 0.32 0.07 523 
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No. Effective strain, 
εe 

Coeficent of 
friction, μ 

Yield strength,  
Rp0,2 [N/mm2] 

4 0.44 0.07 529 
5 0.57 0.07 532 
6 0.71 0.07 533 
7 0.10 0.11 500 
8 0.32 0.11 528 
9 0.71 0.11 537 

10 0.10 0.16 502 
11 0.44 0.16 536 
12 0.71 0.16 544 
13 0.21 0.11 515 
14 0.44 0.11 532 
15 0.57 0.11 535 
16 0.21 0.16 520 
17 0.32 0.16 529 
18 0.57 0.16 540 

 

4. Yield strenght modelling by genetic programming 
 
In the GP method the initial random population P(t) consists of randomly 

generated organisms which are, in fact, mathematical models. The variable t represents 
the generation time. Each organism in the initial population consists of the available 
function genes F and terminal genes T. Terminal genes are in fact independent 
variables: strain and coefficient of friction. Random floating-point numbers within the 
range [-10, 10] are added to the set of terminals to increase the genetic diversities of the 
organisms. Function genes F are basic arithmetical, exponential and cosine functions. 

 

4.1. Evolutionary parameters 
 
The absolute deviation R (i, t) of individual model i (organism) in generation 

time t for the GP approach, was introduced as the standard raw fitness measurement [1]: 
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where: E(j) is the experimental value for measurement j, P(i, j) is the predicted 

value returned by the individual model i for measurement j, and n is the maximum 
number of measurements. The aim of the optimisation task is to find those models that 
equation (1) would give as having as low an absolute deviation as possible. However, 
because it is unnecessary that the smallest values of the above equation also means the 
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smallest percentage deviation of this model, the average absolute percentage deviation 
of all measurements for individual model i was defined as [1]: 
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Equation (2) was not used as the fitness measurement for evaluating population, 

but only to find the best organism in population after completing the run. 
In the GP method, reproduction, crossover, and mutation operations were used 

for altering the population P(t). Evaluation and altering of the population P(t) were 
repeated until termination condition had been fulfilled. The termination condition was 
the prescribed maximum number of generation to be run. Reproduction, crossover, and 
mutation were used as genetic operations. For example, Fig. 1 shows the operation of 
the crossover. Two randomly selected parts of two parental organisms (in boldface) are 
interchanged. Thus two offspring are created [8] 

 

Parent 1 Child 1

Parent 2

Crossover

r (1  ) z   

(1  )z  

r      (   )
Child 2

r + z 

r + z

+ r + r5.6 5.6

 
Fig. 1. Crossover of two mathematical expressions 

 
The evolutionary processes were controlled by the following evolutionary 

parameters: population size 1000, maximum number of generations to be run 50, 
probability of reproduction 0.15, probability of crossover 0.7, probability of mutation 
0.15, maximum depth for initial random organisms 6, maximum depth of mutation 6, 
and maximum permissible depth of organisms after crossover 12.  

 

4.2. Realisation of the evolutionary process 
 
The modelling of yield strength was carried out by the special GP system 

(computer program), which comprises 49 modules, and was programmed in our 
laboratory. The GP system ensures repeated development of the individual civilization 
if necessary. This is very useful when it is necessary to repeat evolution of the 
civilization with a greater number of generations or when evolution is interrupted for 
any reason. Each individual GP run started with the training phase by the training data 
set shown in Table 1 (No.1 to No.12). The testing data set (Table 1: No.13 to No. 18) 
was not included within the training range. Each run lasted up to generation 30 when it 
was temporarily interrupted. If an average percentage deviation Δ(i) of at least one 
prediction model (organism) in the population was smaller than 5%, the evolution of the 
population continued up to generation 50, otherwise it was terminated. After each 
training phase, the accuracy of predicting the best models was tested using the testing 
data set. More a 500 independent runs were executed for modelling the yield strength. 
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The GP models in our research were originally developed as prefix LISP expression 
[10], and then converted into an infix notation.  

 

5. Genetic models-Results and discussion 
 
GP modelling was executed by two different genes function sets F = (+,-,*, /) 

and F = (+,-,*, /, ZEXP). The best (the most accurate) model obtained with genes 
function set F = (+,-,*, /) is quite complicated and is written is LISP as:  

 
 (- (+ (+ (* (- 0.330041 ε) (% ε μ)) (+ (* (% (% μ 9.1439) (% ε -8.45165)) 6.49328) (* (% ε 

μ) (- (+ (* (- μ ε) (- ε ε)) (+ (* 6.70192 μ) (% μ 9.1439))) (% 8.87929 (- μ (- ε -

6.00992))))))) 8.80115) (* (- (+ (- μ 7.33881) (* -1.68909 ε)) (- (* -7.79857 4.25639) (- (+ 

(% (+ (- ε 7.33881) (* 6.49328 ε)) (+ (* 7.39886 ε) (- 1.79688 μ))) (+ (% ε -8.45165) (+ (* 

6.70192 μ) (% μ 9.1439)))) μ))) (+ (- -9.42629 ε) (- -8.5559 μ)))) 
 

 
The same model written as mathematical expression: 
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The model (5.1) was generated in generation No. 47 and has the average 

percentage deviation of the training data Δ (i) = 0.18 % and that of the testing data  
Δ(i) = 0.,185%. Percentage deviation is in fact the percentage error between a single 
experimental value and the value predicted by the genetic model. Slightly better 
accuracy (Δ (i) = 0.175 %, and that of the testing data  Δ(i) = 0.18%) of the GP model 
was obtained when the genes function set which includes the exponent function was 
used: F = (+,-,*, /, ZEXP): 

 
(- (- (* (+ (* 8.218 μ) (+ -6.93491 7.17839)) (+ (% (ZEXP μ) μ) (- 2.8788 -9.30543))) (+ (% 

(ZEXP 5.93875) (* (+ 3.20968 2.16393) (ZEXP ε))) (% (* (- μ -4.38819) (* 8.218 ε)) (% 

(ZEXP (+ ε 7.35216)) (ZEXP (ZEXP ε)))))) (- (+ (+ (- (% (ZEXP (ZEXP ε)) ε) (% (* (+ 

3.20968 2.16393) (ZEXP ε)) (ZEXP ε))) μ) (% (* (+ ε 8.218) (% (* 8.218 μ) (* ε (% 

6.56898 (ZEXP μ))))) (- (+ (* 8.218 μ) (+ -6.93491 7.17839)) (* ε -5.45287)))) (+ (ZEXP (- 

(- 2.8788 -9.30543) (% 6.56898 1.10215))) (% (* (+ (* 8.218 μ) (+ -6.93491 7.17839)) (+ 

(% (ZEXP μ) μ) (- 2.8788 -9.30543))) (* (+ (* 8.218 μ) (+ -6.93491 7.17839)) (+ (% 

(ZEXP ε) μ) (- 2.8788 -9.30543))))))) 
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The upper GP model can be written as a mathematical expression: 
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 (5.2) 
The most accurate simple model with model depth 5, containing 7 function genes 

has average deviation  Δ (i) = 1.67 % (testing data  Δ(i) = 2.2%) is: 
 
    (+ (% -1.85689 ε) (* (-ε -9.72416) (- (+ μ ε) (* 5.39679 -8.66756)))) 
or  
   46.76 μ - 454.79 – 1.85/ε    (5.3) 
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Fig. 2. Percentage deviation curve between the best models regarding individual  

generation and experimental results (F = +, -, *, /, ZEXP) 
 
Figure 2 shows the percentage deviation curve (Δi) between the best model 

regarding individual generation and experimental results when using the set of function 
genes F = {+, -, *, /, ZEXP}. It is obvious that in early generations the best models are 
not as precise as the models generated in late generations. The relatively slow 
improvement of the best models in later generations (after generation 35) is due to the 
unification trends of the population leading to the shortage of new genetic ideas. 

Figure 3 shows the depth curve of the best models (generated with function 
genes F = {+, -, *, /}) in each generation. In generation 0 created randomly, the best 
models have a depth of 5. Then, from generations 2 to 9 the depth of the best models 
increases and reaches the value of 10. In the next generations (from 10 to 30) the depths 
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of models jumped from 10 to 8 and back to 10. Finally, after generation 30, the depth is 
constant and reaches a maximum depth of 10. The higher number of the model depth 
usually means higher complexity of the genetic model. 
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Fig. 3. The depth of the best models regarding individual generation  

 

6. Modelling results obtained by regression analysis 
 
A mathematical model for regression method was chosen according to [11]: 
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Where y is dependent variable, xi, xij are independent variables, while b0, bi, bij 

are coefficients to be determined by using regression analysis. In our case, the 
dependent variable was yield strength (Rp0,2), while effective strain εe and coefficient of 
friction μ were independent variables. Coefficients b0, bi and bij were determined by 
using the regression analysis computer program. By inserting the computed values of 
coefficients into the equation (6.1), the regression model for impact toughness can be 
presented as: 

 
Rp0,2=408.837+213.845ε + 104.061μ - 176.166ε2 – 386.503μ2 + 139.688εμ    (6.2) 

 
Equation (6.2) represents a mathematical model of effective strain’s influence 

and the coefficient of friction on yield strength for chosen material within experimental 
area. It has the average percentage deviation of the training data set ∆(i) = 0.28 % and 
that of the testing data set ∆(i) = 0.32 %.  

When regression models are compared to genetic programming models, the first 
important difference is the complexities of the genetic models. Due to its evolutionary 
concept, genetic programming models are complex, with lots of genes, and the forms of 
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these models can be confusing. But the form of a GP model (5.3) is very simple. Of 
course, when it comes to the accuracies of different models, GP models show much 
greater accuracy then regression models. 

7. Conclusion 
 
The genetic development of models took place on the basis of experimental data. 

The experimental data in this research were in fact the environment to which the 
population of models had to be adapted as much as possible. The models presented are a 
result of the self-organization and stochastic processes taking place during simulated 
evolution, and not of human intelligence. The accuracies of the models developed 
during the training phase were also confirmed using testing data not included within the 
training range. Only two genetically developed models out of many successful solutions 
are presented here.  

The accuracies of solutions obtained by GP depend on applied evolutionary 
parameters and also on the number of measurements and the accuracy of measurement. 
In general, more measurements supply more information to evolution which improves 
the structures of models. At the same time, the greater number of measurements causes 
time-consuming computer processing and the execution of experiments is very 
expensive and requires much time.  

Because of the high precision regarding the models developed by the GP 
approach, with the proposed concept, the excessive number of experiments/simulations 
can be avoided, which leads to the reduction of the product development costs. The 
research showed that simple, and in the same time, very precise models are often hard to 
reach. This is due to the fact that evolution is a stochastic process, therefore, rationality 
in the development of the models is rare. However, in many metal-forming processes 
the accuracy of prediction is of vital importance, not the model complexity. 
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